Depuis un demi-siècle, différentes théories visant à modéliser la chromatographie ont été et continuent à être proposées. Les plus connues sont les approches statistiques (théorie stochastique), le modèle des plateaux, et l’approche par la dynamique moléculaire. Pour expliquer le mécanisme de migration et de séparation des composés dans la colonne, le modèle le plus ancien, ou modèle des plateaux de Craig, est une approche statique, jugée obsolète, mais qui permet de décrire de manière simple les séparations.

Isothermes de distribution.

Figure de distribution. a) Situation idéale correspondant à l’invariance de l’isotherme de concentration ; b) situation dans laquelle la phase stationnaire est saturée – de ce fait la montée du pic est plus rapide que la descente (facteur de traînée plus grand que 1) ; c) situation inversée : le constituant est trop retenu dans la phase stationnaire, le temps de rétention est allongé et la montée du pic est plus lente que la descente, qui apparaît normale. Pour chaque type de colonne, les fabriquants indiquent quelle est leur capacité limite exprimée en ng/composé, avant déformation du pic. Les situations a, b et c sont illustrées avec des chromatogrammes réels en CLHP.

Bien que la chromatographie soit un phénomène continu, on considère dans le modèle statique de Craig, que chaque soluté se déplace progressivement en une suite d’étapes distinctes. Le processus élémentaire est représenté par un cycle d’adsorption/désorption. L’enchaînement de ces étapes reproduit la migration des fluides dans la colonne, de même qu’un film de dessins animés donne l’illusion du mouvement par un suite d’images fixes. Chaque étape correspond à un nouvel état d’équilibre de toute la colonne.

Ces équilibres successifs sont à la base de la notion de plateau théorique selon lequel la colonne de longueur L est découpée en N petits disques fictifs de même hauteur H, numérotés de 1 à n. Pour chacun d’eux, la concentration du soluté dans la phase mobile est en équilibre avec la concentration dans la phase stationnaire de ce soluté. À chaque nouvel équilibre le soluté a progressé d’un petit disque supplémentaire dans la colonne, appelé plateau théorique. La hauteur équivalente à un plateau théorique (HEPT ou H) vaut donc (1.5) :

Cette approche fait appel aux règles de développement des polynômes pour calculer, au niveau de chaque plateau, les masses réparties entre les deux phases en présence.

Si on se place à l’instant I , le plateau J contient une masse totale de soluté mT qui se compose de la quantité mM de ce soluté qui vient d’arriver de la phase mobile du plateau J −1, en équilibre à l’instant I −1, à laquelle s’ajoute la quantité mS déjà présente  dans la phase stationnaire du plateau J à l’instant I − 1.

mT (I , J ) = mM(I − 1, J − 1) + mS(I − 1, J )

En posant que pour chaque plateau mS = KmM et mT = mM + mS, on peut, par une formule de récurrence, calculer mT (ainsi que mM et mS). Étant donné que, pour chaque plateau, le soluté est en équilibre de concentration entre les deux phases, la masse totale de soluté en solution dans le volume de phase mobile VM de la colonne demeure constante, tant que le soluté n’a pas atteint son extrémité. Quant au chromatogramme, il correspond à la masse transitant par la phase mobile au (N + 1)e plateau (fig. 1.5) au cours des équilibres successifs. Cette théorie a pour défaut de ne pas tenir compte de la dispersion due à la diffusion des composés dans la colonne.

Modèle des plateaux.

Modèle des plateaux. Simulation à l’aide d’un tableur de l’élution de deux composés A et B, chromatographiés sur une colonne de 30 plateaux (KA= 0,6 ; KB=1,6 ; MA=300 mg ; MB=300 mg). Composition du mélange en sortie de colonne pour les 100 premiers équilibres. L’application de ce modèle montre à l’évidence une forme de pic non symétrique. Cependant, compte tenu de la diffusion, et comme le nombre d’équilibres est très grand, la courbe prend de plus en plus nettement l’aspect d’une courbe de Gauss.

Le terme de plateau théorique vient d’une approche ancienne décrivant la chromatographie en prenant pour modèle la distillation par Martin et Synge (prix Nobel de chimie en 1952). Ce terme ancré pour des raisons historiques n’a pas la signification physique de son homonyme servant à mesurer les performances d’une colonne à distiller. Il aurait peut-être été préférable de le baptiser par exemple du nom de Tswett !

Le temps total tR de migration du soluté dans la colonne peut être séparé en deux termes : le temps tM pendant lequel il est dissous dans la phase mobile et où il progresse à la même vitesse que celle-ci, et le temps tS pendant lequel il est fixé à la phase stationnaire et où il est donc immobile. Entre deux transferts successifs d’une phase à l’autre, on admet que les concentrations ont le temps de se rééquilibrer.

La chromatographie fait intervenir au moins trois équilibres : soluté/phase mobile, soluté/ phase stationnaire et phase mobile/phase stationnaire. Dans une théorie récente de la chromatographie, on ne parle plus de molécules immobilisées par la phase stationnaire mais simplement ralenties lorsqu’elles passent à proximité.

Was this article helpful?
YesNo

Laisser un commentaire

Close Search Window

En savoir plus sur Analytical Toxicology

Abonnez-vous pour poursuivre la lecture et avoir accès à l’ensemble des archives.

Continue reading